THE TRANSITION METAL-CATALYZED N-HETEROCYCLIZATION.

THE RHODIUM-CATALYZED SYNTHESIS OF INDOLES

Yoshihisa WATANABE, * Michihiro YAMAMOTO, Sang Chul SHIM,
Sogo MIYANAGA, and Take-aki MITSUDO

Department of Hydrocarbon Chemistry, Kyoto University, Kyoto 606

Substituted indoles can be prepared in high yields by the reaction between phenylhydrazine and carbonyl compounds at 180°C in the presence of a catalytic amount of a rhodium complex under non-acidic condition.

We recently reported that the rhodium-catalyzed reaction between aminoarenes and aliphatic aldehydes under non-acidic conditions afforded an efficient, synthetic method of quinolines. We herein wish to report a rhodium-catalyzed synthesis of indoles from phenylhydrazine and aldehydes or ketones. This is the first example of Fischer indole synthesis catalyzed by a transition metal complex under non-acidic conditions. Several methods for building up the indole nucleus under non-acidic conditions have been recently reported including the organometal-assisted intramolecular cyclization and photocyclization. ²⁾

A typical procedure is illustrated as follows. A mixture of phenylhydrazine (40 mmol), an aldehyde or a ketone(40 mmol), μ,μ' -dichlorobis(cyclooctadiene)dirhodium(0.02 mmol), and ethanol(20 ml) was stirred under argon at 180°C for 4 h using a 100 ml autoclave. Products were separated by vacuum distillation or column chromatography and analyzed by means of IR, NMR spectra, and elemental analysis.

Phenylhydrazine reacted with a variety of aldehydes and ketones in the presence of a catalytic amount of [RhCl(COD)]₂ to give 3- or 2,3-substituted indoles in high yields. Representative results are listed in Table. Aliphatic aldehydes such as propanal, butanal, and pentanal gave 3-methyl-, 3-ethyl-, and 3-propylindole respectively. The NMR spectra of these products exhibited typical patterns assigned to the alkyl groups. The reaction proceeded smoothly at 180-200°C but at lower (160°C) or higher(220°C) temperatures, product yields decreased. Ketones also reacted with phenylhydrazine to give 2,3-substituted indoles in high yields. Butanone, 2- and 3-pentanone gave 2,3-dimethyl-, 2-methyl-3-ethyl-, and 2-ethyl-3-methylindole respectively. Cyclopentanone gave the corresponding substituted indole.

Rhodium complexes such as $RhCl_3 \cdot 3H_2O$, $RhCl_3Py_3$, $RhCl(PPh_3)_3$, and $[RhCl(NBD)]_2$

Rur	n Carbonyl	2,3-Substi	tuted Indole	Isolated	¹ H and ¹³ C NMR
	Compound	2- 3	_	Yield (%)	δ (ppm, Me ₄ Si)(CDCl ₃)
1	Propanal	Н	CH ₃	30 (49) ^{b)}	2.31 and 2.32(3H, CH ₃), 6.88(s), 7.0-7.5(m)
2 ^{C)}	Propanal	Н	CH ₃	(65) ^{b)}	J
3	Butanal	Н	CH ₃ CH ₂	22	1.32(t,3,CH ₃), 2.76(q,2,CH ₂), 6.84(s),
			5 2		7.0-7.7(m)
4	Pentanal	Н	CH ₃ CH ₂ CH ₂	30	0.91(t,3,CH ₃), 1.63(m,2,CH ₂), 2.63(t,2,
			5 2 2		CH ₂), 6.59(s), 7.0-7.8(m)
5	Butanone	CH ₃	CH ₃	48	$2.16(s,3,CH_3), 2.19(s,3,CH_3), 6.7-7.8(m)$
6	2-Pentanone	CH ₃	CH ₃ CH ₂	39	1.13(t,3,CH ₃), 1.95(s,3,CH ₃), 2.60(q,2,
		3	5 2		CH ₂), 7.0-7.6(m)
7	3-Pentanone	CH ₃ CH ₂	СН	49	1.15(t,3,CH ₃), 2.19(s,3,CH ₃), 2.61(q,2,
		3 2	3		CH ₂), 7.0-7.6(m)
8	Cyclopentanone - (CH ₂) ₃ -			59	24.3(t,CH ₂), 25.6(t,CH ₂), 28.5(t,CH ₂),
		2	J		111.2, 118.3, 119.3, 124.5, 130.2, 140.8
					143.6

Table. The rhodium-catalyzed synthesis of indoles a)

catalyzed the reaction and the order of the catalytic activity of these complexes was the same as that of $[RhCl(COD)]_2$. Ethanol as the solvent was preferable to benzene and dioxane in this reaction.

An amine-imine type intermediate (3) has been reported for an acid-catalyzed Fischer indole reaction.³⁾ The plausible mechanism of the present reaction seems to include an ortho-metalation step to form a rhodium containing intermediate (4). Ortho-metallated complexes are given by the reaction between N-containing compounds such as azobenzene and metal complexes.⁴⁾

The present procedure must be widely applicable for a variety of aliphatic aldehydes and ketones, leading to a synthetic route of substituted indoles.

References

- 1) Y. Watanabe, M. Yamamoto, S.C. Shim, T. Mitsudo, and Y. Takegami, Chem. Lett., 1979, 1025.
- 2) R. Beugelmans and G. Roussi, J. C. S. Chem. Commun., 1979, 950, and refs. cited therein; M. Mori, K. Chiba, and Y. Ban, Tetrahedron Lett., 1977, 1037; L.S. Hegedus, G.F. Allen, J.J. Bozell, and E.L. Waterman, J. Am. Chem. Soc., 100, 5800 (1978); Y. Ito, K. Kobayashi, and T. Saegusa, Tetrahedron Lett., 1979, 1039.
- 3) See, for example: A.W. Douglas, J. Am. Chem. Soc., 101, 5676 (1979).
- 4) D.R. Fahey, J. C. S. Chem. Commun., 1970, 417; J. Organometal. Chem., 27, 283 (1971).

(Received March 24, 1980)

a) A mixture of phenylhydrazine(40 mmol), a carbonyl compound(40 mmol), $[RhCl(COD)]_2$ (0.02 mmol), and ethanol(20 ml) was treated at $180\,^{\circ}C$ for 4 h.

b) Determined by GLC. c) At 200°C for 12 h.